Miniature motors make for smaller positioners
Size matters in miniaturization and automation – smaller is usually better. Traditional electromagnetic motors have limitations when it comes to shrinking dimensions while maintaining high efficiency and accuracy of motion with minimized energy consumption. Piezo ceramic inertia motors can fill this gap.
Air bearings myths and FAQ’s
Unlike mechanical bearings, air bearings free of wear and friction. The article answers questions on when to use air bearings and when to go with mechanical or flexure bearings.
FAQs Myths Scanning Performance Satellite Testing Rotary Air Bearings
Hexapod robots in automation applications
As the precision requirements in the automotive industry are increasing, the need for advanced robotics arises. Traditional robots are fast, can handle heavy loads, but lack positioning accuracy. Hexapod robots have a long history in precision alignment & micro-manufacturing automation, but were considered too precise for the automotive industry. The situation is rapidly changing.
Advances in piezo mechanics aid eye surgery
Piezo motion-based mechanisms provide a variety of features that are highly sought after in life-science and medical engineering applications, such sterile ceramic designs and lubricant-free drives. Ceramics are also non-magnetic, an advantage in high-energy imaging/scanning based on strong magnetic fields.
Parallel Kinematic Machines (PKM’s)
PKM’s are often referred to as Stewart Platforms. Based on a 6-axis (XYZ, Pitch, Roll, Yaw) actuator system arranged in parallel between a top and bottom platform, PKM’s have many advantages over serial kinematics designs, such as lower inertia, improved dynamics, smaller package size and higher stiffness.
Piezo nanopositioning basics – precision, speed, stability
There are several ways to achieve nanometer precision motion.The best positioning systems avoid friction all together, in both the drive system (motor) and in the guiding system (bearings). Piezo drives provide much more than just nanometer resolution.